| ... |
... |
@@ -78,14 +78,14 @@ Never use switch/case statements in combination with <code>\randadjustIf</code>. |
| 78 |
78 |
\randint[Z]{s}{-1}{1} |
| 79 |
79 |
\begin{switch} |
| 80 |
80 |
\begin{case}{s>0} |
| 81 |
|
- \string{equation}{ |
|
81 |
+ \string{s_equation}{ |
| 82 |
82 |
\begin{equation*} |
| 83 |
83 |
\int \cos(x)\cdot e^x\,dx. |
| 84 |
84 |
\end{equation*} |
| 85 |
85 |
} |
| 86 |
86 |
\end{case} |
| 87 |
87 |
\begin{default} |
| 88 |
|
- \string{equation}{ |
|
88 |
+ \string{s_equation}{ |
| 89 |
89 |
\begin{equation*} |
| 90 |
90 |
\int \sin(x)\cdot e^x\,dx. |
| 91 |
91 |
\end{equation*} |
| ... |
... |
@@ -99,7 +99,7 @@ Never use switch/case statements in combination with <code>\randadjustIf</code>. |
| 99 |
99 |
\text{ |
| 100 |
100 |
Lösen Sie das folgende unbestimmte Integral mittels partieller Integration |
| 101 |
101 |
\\ |
| 102 |
|
- \var{equation} |
|
102 |
+ \var{s_equation} |
| 103 |
103 |
\\ |
| 104 |
104 |
Die Lösung lautet $F(x)= $ \ansref $+\ c$. |
| 105 |
105 |
} |
| 106 |
106 |
|