**News**

**Working with MUMIE as author**

- Initial steps:
- Articles:
- Problems:
- Programming with Python
- New Visualizations with JSXGraph
- Old Visualizations:
- Media Documents:

**Working with MUMIE as teacher**

**Using MUMIE via plugin in local LMS**

**FAQ**

Mumie Wiki

You're not logged in

**Working with MUMIE as author**

- Initial steps:
- Articles:
- Problems:
- Programming with Python
- New Visualizations with JSXGraph
- Old Visualizations:
- Media Documents:

**Working with MUMIE as teacher**

**Using MUMIE via plugin in local LMS**

**FAQ**

We revise and update this wiki. We apologize for the inconvenience this may cause you.

All variables and functions are interpreted in a number field which can be defined within the

question environment by the `\field{...}`

command. It can take one of the following values:

number field | Description |
---|---|

real | real numbers (i.e. decimal numbers); this is the `default` value if the `\field{number field}` command is omitted |

integer | integer numbers |

rational | rational numbers |

complex | complex numbers with real numbers as real and imaginary parts |

complex-rational | complex numbers with rational numbers as real and imaginary parts |

1234567891011 `\begin{problem}`

` `

`\begin{question}`

` `

`\field{...} % set for this question and all their answers`

` `

`\begin{answer}`

` `

`...`

` `

`\end{answer} `

` `

`\end{question} `

`\end{problem}`

If the number field is chosen to be *real* or *complex*, there are two issues of **precision**:

the **display-precision** of the numbers/functions and the **corrector-precision**.

For more information about precision see also the two examples in WebMiau:

https://miau.mumie.net/web-miau/editor/content%2Fexamples%2FinputFunction%2Fprb_calculations_with_roundet_numbers.src.tex

https://miau.mumie.net/web-miau/editor/content%2Fexamples%2FinputFunction%2Fprb_input_function_rounding_numbers_correctorprecision.src.tex

**Important conditions:**

- Corrector precision must be less or equal to displayprecision.
- For all functions rounded to a precision $n$ the xorrector precision must be less or equal to n.

For displaying variables defined by `\number`

,`\randdouble`

, or `\randrat`

one uses the

command **\displayprecision{\ }** which defines the number of digits

used for displaying.

When a number was created by the `\function`

-command (or `\substitute`

or `\derivative`

)

using the *calculate* option, the precision defined with the above command will be

ignored. This is because computations should not be rounded while not visible to the user.

In case you do want to display the calculated value then set the precision within the command,

`\function[calculate,3]{f}{c/3}`

.

Again this value should be $$\geq$$ corrector precision.

The precision used for correction depends on the type of the answer.

For type input.number, one uses the command**\correctorprecision[correctorOption]{number of decimal digits}**

similar to `\displayprecision`

. For details see the wiki-page about rounding

*If \correctorprecision is not specified, then the generic problem will use the defaultvalue of 2.*

For answers of type input.function the precision is given as an optional argument in the

command that specifies how to check the given answer for correctness.

See Corrector commands for input.function.

Updated by **Ruedi Seiler**, **4 months ago **– bc0c30c